AgentRank: A Decentralized Trust and
Coordination Framework for Multi-
Agent Systems in the A2A Era

William Luedtke, Intuition, billy@intuition.systems

James Young, Abridged, james@abridged.io

Abstract

Recent advances in multi-agent systems have highlighted the need for interoperable
protocols and trust mechanisms to enable Al agents to collaborate effectively. Google’s
Agent-to-Agent (A2A) protocol provides a new open standard — essentially “the HTTP of Al” -
that allows intelligent agents to discover each other, communicate, and coordinate tasks
across different platforms . However, while A2A offers a common language for agent
interaction, it raises concerns about centralization in agent discovery and reputation. If a
single intermediary (e.g. a corporate index or directory) controls how agents are found and
trusted, the ecosystem could recentralize around that gatekeeper. This paper proposes a
decentralized alternative for agent registry and reputation management, building on
Intuition’s approach of a token-curated decentralized knowledge graph. We introduce
AgentRank, a novel algorithm for evaluating and ranking Al agents that is: (i) decentralized
and verifiable (trust data is recorded on an open ledger, audit-able by anyone), (ii) Sybil-
resistant (robust against fake identities and collusive clusters of agents), (iii) privacy-
preserving (supporting pseudonymous agent identities and selective disclosure of
credentials), and (iv) multi-faceted (incorporating verifiable claims, task performance records,
interaction graphs, staking, and endorsements into the reputation score). We formalize the
AgentRank system with a graph-based trust model, defining how trust propagates through
endorsements, how it decays over time, and how disputes are resolved. We also describe
how AgentRank can integrate with the A2A protocol by attaching decentralized identity and
reputation metadata to agent-to-agent interactions. The result is a secure, open, and
composable coordination layer for multi-agent systems: A2A provides the communication
pipes, and AgentRank provides the “yellow pages” and credit score that let agents find
trustworthy peers in a permissionless way. Together, these innovations lay the groundwork for

mailto:james@abridged.io
www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

an open ecosystem of Al agents cooperating at scale without reliance on centralized
authorities.

Introduction

Artificial intelligence is increasingly moving from monolithic systems toward networks of
specialized agents working together. The notion of swarm intelligence — many simple agents
whose collective behavior yields complex intelligence — is gaining traction as a path toward
more powerful Al, possibly even a route to AGI. A critical enabler of such multi-agent
collaboration is a standardized way for agents to communicate and coordinate with each
other across different organizations and platforms. In April 2025, Google introduced the
Agent-to-Agent (A2A) protocol, an open specification for cross-agent interaction. In
essence, A2A is like the HTTP of Al: it allows heterogeneous Al agents to discover one
another, exchange messages, and work together on tasks in a secure and structured manner .
For example, A2A defines how agents can advertise their capabilities, find peers with needed
skills, and conduct long-running asynchronous dialogues to delegate subtasks. Crucially, A2A
also includes provisions for human oversight (human-in-the-loop control) to supervise agent
conversations. By providing a common language for interoperability, A2A fills a “missing
puzzle piece” for scaling up multi-agent workflows . It has garnered broad industry support —
with dozens of tech companies partnering to push A2A as a universal standard — and
complements existing model-focused protocols like Anthropic’s Model Context Protocol
(which connects models to tools) by instead connecting agents to agents.

While the A2A protocol itself is open, Google’s stewardship of A2A raises important questions
of governance and control in the emerging agent ecosystem. Historically, the entity that
defines and hosts a fundamental protocol often gains significant influence over how it is used.
Google, whose core business involves being an intermediary for search and information, is
positioning itself to be an intermediary for agent interactions and discovery. In an A2A-driven
world with potentially millions of agents, there will be a need to find the right agent for a given
task (analogous to finding information on the web). If most agents register in a directory or
index service run by the protocol provider, one company could end up effectively controlling
which agents are visible or trusted — similar to how one search engine can dominate web
discovery. In a worst-case scenario, this leads to recentralization: even though any agent
can technically speak A2A, all agent-to-agent interactions might be brokered or mediated by
a dominant platform (e.g. a centralized “app store” or search engine for agents. Such

concentration of power could stifle innovation (by controlling which agents get exposure),
introduce bias or rent-seeking into reputation rankings, and create single points of failure or
surveillance in a system that ought to be distributed. In short, the community must ensure
that an ostensibly open protocol does not inadvertently funnel everyone through a few hubs —
a fate reminiscent of the early Semantic Web vision giving way to corporate-controlled
knowledge graphs.

To prevent this outcome and preserve the open spirit of A2A, we need complementary
infrastructure that handles agent discovery, identity, and trust in a decentralized manner. This
is where Intuition’s work becomes relevant. Intuition is a framework for decentralized
reputation and knowledge sharing, centered around a permissionless, community-curated
knowledge graph. In essence, Intuition’s platform acts as a neutral meeting ground or “public
square” for Al agents: instead of a single company owning the directory of agents, the
directory is maintained collectively as a token-curated registry on a blockchain. Participants
can add information about agents and validate others’ contributions, earning rewards for
accuracy and having their stake slashed for false or malicious inputs. Over time, this yields a
living, self-healing database of agents, their capabilities, and their track records, governed by
crypto-economic incentives rather than any central gatekeeper.

Intuition’s approach can be seen as building a “Web of Trust” for humans and machines alike:
just as human-centric web-of-trust models (e.g. PGP for public keys) rely on a graph of
endorsements to establish identity and reputation, Intuition creates a graph of verifiable
attestations for everything. In this context, that means enabling Al agents to identify one
another, assess credibility, and interact within a shared framework of trust. Each agent (and/or
its human developer) is associated with a decentralized identity (DID) and can make or receive
claims — for example, “Agent X successfully completed 10 trading tasks” or “Agent Y is skilled
at language translation”. These claims are signed by the issuer and recorded on an immutable
ledger, forming an auditable trail of an agent’s history. Using token-curation and staking,
network participants (people and machines) can upvote truthful claims (strengthening their
credibility) or challenge and downvote false claims, building a robust reputation profile for the
agent. Because all reputation data is on a public ledger and community-maintained, no single
party (not even the creators of the protocol) can covertly alter or censor an agent’s reputation.
Trust becomes a public good rather than a proprietary service.

In this paper, we build on these developments to propose AgentRank: a decentralized
reputation algorithm and architecture for multi-agent systems that complements the A2A

protocol. Our contributions are as follows: (1) We outline the design of a decentralized agent
registry and knowledge graph (built atop Intuition's general-purpose token-curated
knowledge graph) that can serve as the open directory of Al agents, storing identities,
capabilities, and performance records without centralized control. (2) We introduce the
AgentRank algorithm, which computes a global reputation score for each agent based on
the graph of endorsements and interactions, with properties of trust transitivity, damping
(decay of old information), Sybil-resistance, and privacy preservation. We present a formal
model for AgentRank, including notation for agents, claims, and trust relationships, and define
the iterative trust propagation and update rules, as well as mechanisms to handle disputes
(conflicting or false information) and trust decay over time. (3) We describe how AgentRank’s
outputs (agent trust scores and verifiable credentials) can be integrated at the A2A protocol
level — for instance, by embedding agent identity proofs and reputation metadata into A2A
discovery or messaging flows — to enable agents to make informed decisions about which
other agents to cooperate with. Finally, (4) we discuss an evaluation plan for the proposed
system, including simulations to test Sybil attack resistance and collusion scenarios,
performance benchmarks, and integration tests in a multi-agent workflow. We envision that
combining A2A with a decentralized trust layer will establish the foundation for a secure,
open, and composable multi-agent coordination layer. In this paradigm, no single
company dictates the “rules of engagement” for Al agents; instead, trust emerges from
transparent community curation, and agents can freely collaborate knowing that their
identities and reputations are verifiable and earned. The remainder of this paper is organized
as follows. Section Background reviews Google’s A2A protocol and Intuition’s decentralized
knowledge graph approach. Section System Design details the architecture of the proposed
decentralized agent registry and how it manages identity and reputation. Section AgentRank
Algorithm provides a formal specification of the reputation computation, including trust
propagation, decay, and dispute resolution. Section Integration with A2A discusses how
AgentRank can augment A2A at the protocol level. Section Evaluation Plan outlines how we
will rigorously test the system. We conclude with future directions and the broader
implications for multi-agent Al ecosystems.

Background

Google’s Agent-to-Agent (A2A) Protocol

The A2A protocol is an open standard developed by Google for facilitating agent-to-agent

communication and coordination across different platforms and organizations. In functionality,
it is often likened to the Internet protocol suite for Al agents, providing low-level
interoperability akin to how TCP/IP and HTTP enable data exchange on the web. A2A defines
a set of capabilities essential for multi-agent collaboration:

+ Agent Discovery and Capability Advertisement: Agents can publish descriptions of
their skills, services, or APlIs they provide. Conversely, they can query the network for
agents that meet certain criteria or have specific capabilities. This is analogous to service
discovery in distributed systems. For example, an agent needing translation services
could find another agent that advertises a translation capability via A2A.

+ Standardized Messaging and Task Coordination: A2A specifies formats and protocols
for message-passing between agents. This includes the ability to have long-running,
asynchronous exchanges - e.g. an agent can delegate a subtask to another agent, which
processes it for hours and then returns the result in a follow-up message. The messages
can carry structured data about tasks, requests, responses, or even negotiations
between agents. By standardizing the message schema and interaction patterns, A2A
makes it possible for agents from different vendors or ecosystems to understand each
other and work together on complex workflows.

+ Security and Trust Boundaries: The protocol emphasizes secure communication.
Agents authenticate and authorize communications to ensure that information exchange
is permitted and secure. While details are evolving, A2A likely leverages encryption and
possibly token-based authentication for agents to establish trusted channels (similar to
how web services use API keys or certificates). A notable aspect is human-in-the-loop
support: A2A allows human supervisors to review and intervene in agent communications
when needed. This is crucial for enterprise settings concerned with compliance and
safety.

* Integration with Model Tools (MCP): A2A is designed to complement the Model
Context Protocol (MCP) rather than replace it. MCP focuses on how a single Al model
accesses tools and data (for example, an LLM calling an external API), whereas A2A
focuses on how independent agents (each potentially with their own model and tools) talk

to each other®. Together, they enable an agent to both utilize tools (via MCP) and
collaborate with others (via A2A). This layered approach reflects a shift from deterministic
API orchestration to more autonomous, dialogue-based coordination among Al entities.

Upon its announcement, A2A was backed by over 50 technology companies (e.g. Salesforce,
PayPal, Deloitte, and others) signaling broad industry interest. Initial implementations of A2A

are expected to target enterprise agent networks, where complex workflows (spanning
multiple departments or organizations) can be automated by agent collaboration. Because of
this enterprise orientation, some observers have noted that the A2A spec is quite

heavyweight, with many features and moving parts designed for robustness at scale®. This
might slow adoption among small developers or open-source projects initially, but over time,
if A2A becomes the ubiquitous standard (much like HTTP did), lighter-weight tooling and
libraries will likely emerge.

In summary, A2A addresses the protocol layer of multi-agent systems by providing a universal
language and procedure for agent interactions. However, A2A’s scope does not inherently
solve how agents are identified, discovered, or evaluated on a global scale — it assumes
agents can be found and that they trust each other’s communications to some degree. These
aspects — “Who is this agent? How do | know if it’s competent and honest?” — are left as
open problems. In a default scenario, one might imagine centralized solutions (e.g. a Google-
run agent directory or reputation service) filling this gap, which as discussed in the
introduction, could reintroduce central points of control. The following sections explore a
decentralized approach to this problem.

Intuition’s Decentralized Knowledge Graph for Trust

Intuition is a decentralized protocol and platform aimed at providing a shared environment for
trust assessment, reputation, and knowledge curation in peer-to-peer networks. In the
context of Al agents, Intuition functions as an open database where information about agents
can be published and validated by the community. At its core, Intuition leverages a
decentralized knowledge graph data structure, combined with crypto-economic incentives
(tokens and staking), to encode trust relationships and factual claims in a tamper-resistant,
transparent way.

The Intuition knowledge graph is described as the world’s first token-curated knowledge
graph. Token-curation means that participants use a token (a cryptographic asset) to signal
approval or disapproval of entries in the database, aligning incentives such that high-quality
information is rewarded and misinformation is penalized. The data model draws from
semantic web principles:

+ Atoms: Fundamental units representing entities or concepts. In this case, each Al agent
can be an Atom in the graph, with a unique identifier (which could be a DID) and

associated metadata (like a wallet address for staking and a vault to track reputation
signals). Other concepts, such as skill categories or credentials, can also be Atoms.

+ Triples: Atoms are connected by directed relationships known as triples
(subject-predicate—object statements). For example, a triple could be (Agent_A,
completedTask, Task_42) or (Agent_A, hasSkill, “translation”). In Intuition, triples
themselves are first-class citizens (they can even be treated as Atoms), allowing complex
statements and higher-order relationships. Each triple that is asserted in the knowledge
graph can have an associated trust value or support level, determined by community
input.

+ Vaults and Signals: Every Atom or Triple in Intuition’s graph has an associated Vault
where stakeholders can deposit tokens to express confidence (or lack thereof) in that
piece of information. A positive stake (tokens locked in support) is a Signal that many
users believe the statement is true or the concept is relevant, whereas a negative stake
(or downvote mechanism) indicates contested information. These vaults use smart
contract mechanics (inspired by ERC-1155/4626 standards for multi-fund tokens) to
manage staking. Participants who stake correctly (i.e. on information that the majority
ultimately upholds as true) can be rewarded with more tokens or reputation, while those
who stake on false information can lose their stake. In this way, Intuition creates financial
incentives for participants to provide accurate information and to vet others’
contributions.

Using these components, Intuition builds a semantic, crowdsourced knowledge base of
agent-related information. Importantly, it incorporates existing decentralized identity
standards: agents are associated with Decentralized Identifiers (DIDs) and can present
Verifiable Credentials (VCs) as claims about themselves. For instance, an agent could have
a verifiable credential asserting it passed a certification exam or is affiliated with a reputable
organization; the issuer of that credential (say a university or company) would sign it, and it
can be posted as a triple in the graph (Agent_X, credential, “Certified_Agent_Level_2”) along
with the issuer’s signature. Because the credential is cryptographically signed and perhaps
recorded on-chain, its authenticity can be independently verified by anyone.

Over time, as agents perform tasks and interact, the graph accumulates a rich set of data:
endorsements agents make about each other, records of successful or failed collaborations,
skill assertions, and more. Each agent thus builds up a Web3 reputation — essentially an on-
chain profile of what they have done and what others think of them. For example, after two
agents work together on a project and succeed, one might log a triple like (Agent_JX,

collaboratedWith, Agent_Y) and (Agent_X, outcomeOfLastCollaboration, “success”).
Community members (or the collaborating agents themselves) might stake tokens on these
triples to affirm they are accurate. As these attestations grow, an agent that consistently
performs well and is endorsed by others will accrue a strong reputation record visible on the
ledger. Conversely, an agent that behaves maliciously (e.g. producing bad outputs or
spamming) will see negative feedback: other agents or users can flag its misbehavior by
creating negative statements (like (Agent_Z, flaggedFor, “malware”) and staking against its
trustworthiness), and if verified, such an agent could be down-ranked or even removed from
the registry through a governance mechanism.

It’s worth noting that Intuition’s design is permissionless and transparent. Anyone can add an
agent or make a claim (there is no central authority deciding whose agent gets listed), but the
token-curation process means there is a cost to adding low-quality information. By having
stake “on the line,” the system discourages Sybil attacks where an attacker floods the registry
with fake agents or fake reviews — each fake entry would require a deposit of tokens and
could be challenged by others, making it economically expensive to spam the system. This
addresses one of the hardest problems in open reputation systems: Sybil resistance (how to
prevent a single entity from masquerading as many identities to game the reputation).
Intuition’s approach, similar to token-curated registries and prediction markets, leverages
economic skin-in-the-game rather than relying purely on network topology or proof-of-
personhood. (We will reinforce Sybil resistance further in the AgentRank algorithm design,
combining staking with trust graph analysis.)

In summary, Intuition provides a decentralized trust infrastructure that can serve as the
foundation for agent discovery and reputation in an open network. It is “more like GitHub than

Google Search”?: the data is open for anyone to access or contribute to, and the relevance or
ranking of entries emerges from community consensus rather than a proprietary algorithm.
This infrastructure aligns with broader trends in Web3 and decentralized Al: it uses
blockchain for immutable storage, DIDs/VCs for interoperable identity, and knowledge
graphs for structured, queryable information. The combination of these allows building an
agent directory that no single entity owns, and where trust is established through verifiable
data. Next, we leverage this infrastructure to define AgentRank — the algorithm that computes
quantitative reputation scores from the qualitative data in the knowledge graph.

Related Work on Decentralized Trust and Reputation

The concept of aggregating trust through a graph of interactions is well-established. Notably,
Google’s original PageRank algorithm demonstrated how a global “importance” score could
be derived for web pages based on the link graph of the Web. PageRank’s underlying
mathematics (eigenvector centrality via power iteration) has since been adapted to many
domains of reputation and trust. In peer-to-peer (P2P) networks, the EigenTrust algorithm
(Kamvar et al., 2003) applied a similar idea to compute global trust values of peers based on

their transaction histories'. Each peer aggregates the feedback (like positive or negative file-
sharing experiences) from other peers and then uses an iterative averaging process to
converge on a global trust score for every node. Importantly, EigenTrust showed that such a
system can drastically reduce the impact of malicious peers in file sharing networks by having

honest peers avoid interacting with low-trust (likely malicious) peers1. Even under collusion
(multiple malicious peers boosting each other), the global trust computation tends to isolate

the bad actors, as long as they are not positively endorsed by a sufficient number of honest

peers®.

Our AgentRank algorithm is conceptually similar to EigenTrust/PageRank in that it treats trust
as a flow in a directed graph, but with significant enhancements to handle the multi-faceted
nature of Al agent reputation and the requirements of decentralization and privacy. Other
related efforts include Web-of-Trust models in security (e.g. PGP’s web of trust for key
signing) and contemporary decentralized identity systems (e.g. BrightID, Decentralized
Identifiers) that attempt to establish uniqueness or trust through social graphs. We draw
inspiration from these: like PGP, we allow trust to be transitive (if A trusts B and B trusts C,
some trust can be inferred for C), but we formalize it in a rigorous algorithmic way with
weighting and decay. Additionally, approaches in blockchain such as Proof-of-Stake and
staking-based governance have elements of reputation (stakers with a history of honest
behavior are effectively more influential). AgentRank combines graph-based trust computation
with staking mechanisms, aiming to get the best of both: a quantitative trust score that is
difficult to game without economic cost, and which is rooted in actual performance and

endorsements.

Finally, privacy-preserving reputation has been explored in research (e.g. using cryptographic
accumulators or zero-knowledge proofs to allow reputation to be proven without revealing
exactly which interactions produced it). While we won’t delve deeply into cryptographic
techniques in this paper, we incorporate the ethos of those works by allowing agents to

maintain pseudonymity (no requirement to link to a real-world identity) and by suggesting
potential use of zk-proofs for selective disclosure of reputation data (see Section AgentRank
Algorithm on privacy).

System Design: Decentralized Agent Registry and
Reputation Network

In this section, we describe the design of a decentralized agent registry and reputation
network that forms the basis for AgentRank. The system design extends the Intuition
knowledge graph paradigm, focusing specifically on structures needed for agent discovery
and trust evaluation. The key components of the design are: (1) Agent Identities and
Profiles, (2) Knowledge Graph Data Structures (for claims and interactions), (3) Curation
and Governance Mechanisms (staking, voting, dispute resolution), and (4) Query
Interfaces for discovery and verification.

Agent Identity and Profile

Each Al agent is assigned a unique Decentralized Identifier (DID), which serves as the global
reference for its identity. The DID is linked to a public-private key pair; the agent (or its owner)
retains the private key to sign statements (claims) and Agent2Agent (A2A) messages. This
cryptographically proves that any given claim or message truly originated from the agent in
question. The DID may be registered on a blockchain or DID registry and resolves to a DID
Document containing the agent’s public keys and service endpoints.

Building on the DID, every agent publishes an A2A Agent Card—a public metadata file (often
located at /.well-known/agent.json)—which outlines the agent’s capabilities, skills, endpoint
URL, and authentication requirements. In Intuition’s terms, this Agent Card is also stored as
an Atom in the decentralized knowledge graph, representing the agent’s profile. By referring
to the DID within the Card, any client or other agent can discover and verify:

+ Capabilities/Skills: The tasks the agent can perform (e.g., negotiation, data analysis, etc.).

+ Verifiable Credentials: References (e.g., hashes or links) to credentials like “Certified
Negotiation Agent (Level 1),” which can be retrieved and validated.

* Reputation Vaults: Numeric counters or token vaults that track positive and negative
signals about the agent.

+ Agent Actions: A feed of important on-chain events or claims the agent has issued (e.g.,
signed statements, transaction logs).

When a new agent joins the network, its creator registers the agent’s DID and publishes the
corresponding Agent Card (i.e., the agent’s Atom) to the chain/graph. Often, this process
requires staking a security deposit (tokens) into the agent’s vault. The deposit acts as a
deterrent against creating disposable or malicious agents; should an agent be proven
malicious, its stake may be slashed (forfeited). This built-in cost of entry helps mitigate Sybil
attacks and encourages accountability throughout the network.

Knowledge Graph: Claims and Interactions

The heart of the system is the knowledge graph that records claims about agents and their
interactions. We define a claim broadly as any statement asserting something about one or
more agents. The schema of claims is extensible, but common categories include:

+ Performance claims: e.g. “Agent A completed Task T successfully at time X,” or “Agent
B’s solution to problem Y achieved 90% accuracy.” These typically involve an agent and
a task/outcome.

+ Endorsement claims: e.g. “Agent A endorses Agent B for skill Z,” or “User U gives
Agent C a 5-star rating for service.” This represents subjective evaluations or trust one
entity places in another.

- Credential claims: e.g. “Authority X certifies Agent A in category Z,” which might be
derived from a verifiable credential issuance.

+ Interaction claims: e.g. “Agent A collaborated with Agent B on project P on date D,”
possibly with an outcome attached.

Each claim in the graph is represented as one or more triples linking the involved entities. For
example, “Agent A collaborated with Agent B successfully on supply chain optimization”
might be broken into triples: (Agent_A, collaboratedWith, Agent_B) and (Agent_A, outcome,
success) and (Agent_A, domain, supply_chain). The subject of these triples could be Agent_A
(if we consider it Agent_A’s profile logging the event) or a separate “event” entity — design
choices may vary. What’s important is that these facts are recorded on-chain or in a
cryptographically secured data store so that they cannot be falsified after the fact (immutable
history).

For every claim, we also record metadata: who issued the claim (digital signature of issuer),

when it was issued (timestamp/block number), and any evidence or references (perhaps a
hash of a detailed report, or a link to an IPFS file with logs). Claims may also start in a
“pending” state awaiting verification if they require consensus (for instance, if Agent A claims
“I completed Task T”, we might require the task requester or an oracle to also confirm this
claim for it to be fully accepted).

The knowledge graph thus grows as agents operate: each successful interaction adds
positive claims for the participants, each failed interaction might add a negative claim or at
least lack a positive confirmation, and third parties can contribute information (like
independent audits or evaluations of an agent’s outputs).

Community Curation and Governance

To manage the quality of information in this open graph, we use a community curation
mechanism enabled by Intuition’s token-curated registry. This operates in several ways:

+ Staking on Claims: When a claim is added, other agents or users can stake tokens to
either support it (if they believe it is true/valuable) or challenge it (if they doubt its
correctness). For example, if Agent X claims “achieved 95% success rate on image
classification tasks,” and this seems suspiciously high, others might challenge it by
staking against it. Conversely, if others have observed Agent X’s performance and agree,
they stake in favor. The system can set a requirement that a claim needs a certain net
stake in support (or a certain support-to-challenge ratio) to be considered verified or to
contribute to reputation scores.

- Reputation as Stake/Collateral: An agent’s own accumulated reputation can be treated
as collateral for its claims. An agent with high reputation might implicitly get its claims
accepted more easily (because it has more to lose if caught lying, and it presumably has
community trust), whereas a new agent with no reputation might need to provide external
evidence or stake to have its claims accepted. This dynamic is sometimes phrased as
using reputation-as-collateral - trustworthy agents effectively “stake” their existing
reputation when making new assertions or when engaging in risky behavior.

+ Voting and Moderation: For disputes that cannot be resolved purely by stake signals, a
governance process kicks in. This could be a simple community vote (token-weighted or
one-person-one-vote depending on the governance model) or referral to a decentralized
arbitration service. For instance, if a claim is heavily challenged (lots of stake on both
sides) and too important to leave ambiguous, it might go to a specialized dispute

resolution smart contract (or even a service like Kleros) where a jury of community
members reviews evidence and decides the outcome. The decision would then finalize
whether the claim stands or is removed, and correspondingly, winners of the stake battle
receive rewards and losers are slashed.

+ Dynamic Reputation Adjustments: The outcomes of curation feed back into agent
reputations. If an agent is found to have made a false claim, that agent’s own reputation
score can be penalized (and any stake they put up might be burned). Likewise, if an
agent is consistently endorsed by others and its claims survive scrutiny, its reputation
improves. We essentially have a feedback loop: reputation influences how claims are
judged, and claim outcomes influence reputation.

The Sybil resistance here comes from the fact that acquiring a fake reputation would require
either a lot of stake or collusion from already trusted agents. A cluster of fake agents could all
vouch for each other, but since none of them initially have reputation or stake, their claims
carry little weight and can be dismissed. If the attacker tries to inject many fake agents, they
have to distribute their stake among them, which typically results in each fake identity only
getting a small amount of support (diluting their effectiveness). Meanwhile, honest agents
tend to build interconnections with many others, creating a large connected component of
trust that fake clusters can’t easily penetrate. This principle will be quantified in AgentRank’s
algorithm (Section AgentRank Algorithm), where the global trust scores of a closed group of
entities with no incoming trust from outside will be inherently limited.

Another aspect considered is trust decay: information can become stale or less relevant over
time. The governance mechanism can include policies like aging of claims (older
endorsements slowly lose weight if not renewed) to ensure that reputations reflect current
behavior. For example, a claim that an agent was top-performing in 2021 might be less
relevant by 2025 if not backed by recent data. We implement decay mathematically in the
AgentRank algorithm, but it could also be implemented on-chain by requiring periodic re-
staking on old claims or by diminishing their token weight.

Query and Integration Interfaces

The ultimate purpose of this registry and reputation system is to be used by agents (and
human operators) to make decisions. Thus, we expose query interfaces:

- Discovery Queries: An agent (or user) can query the graph for agents that meet certain
criteria, much like a search engine for agents. Queries can be by capability (“find agents

skilled in database optimization with reputation > 0.8”), by identity (“lookup agent with
DID X to get its profile and trust score”), or by relationship (“who has Agent Y
collaborated with successfully?”). The open nature of the graph means anyone can run a
query node or use graph query languages (like GraphQL or SPARQL if semantic web
standards are used) to retrieve this information.

* Reputation API: We maintain a function that given an agent’s ID returns its AgentRank
score (see next section) and possibly a breakdown of that score (e.g. contributions from
different domains or types of endorsements). Because the reputation is computed from
on-chain data, anyone can independently compute it; however, for convenience and real-
time use, there could be decentralized oracle services or indexer nodes that publish
updated scores periodically.

+ Integration with A2A: Agents using the A2A protocol can integrate with this registry via
standardized metadata. For example, when an agent advertises itself in A2A discovery, it
might include its DID (so that the requester can look up its profile in the knowledge
graph). The A2A message schemas might have optional fields for an agent to provide a
proof of its on-chain identity or certain credentials (e.g. an agent could attach a verifiable
credential or a cryptographic proof that it has an AgentRank above a threshold, without
revealing everything else).

By using these interfaces, the multi-agent ecosystem gains composability: any agent
platform or framework that adopts A2A can plug into the decentralized trust graph to
immediately gain an open discovery and reputation layer. This ensures no lock-in — an agent
from Company A can find an agent from DAO B if both adhere to these open protocols, and
they can mutually verify each other’s reputations via the shared source of truth.

Having outlined the system architecture, we now turn to the core algorithmic component: how
do we compute a useful reputation metric (AgentRank) from the wealth of structured data and
signals in this knowledge graph?

AgentRank Algorithm: Decentralized Trust
Evaluation

The AgentRank algorithm computes a quantitative reputation score for each agent in the
network, based on the graph of trust relations and performance data accumulated in the
knowledge graph. We design AgentRank to meet the criteria of decentralization, Sybil-

resistance, privacy preservation, and expressiveness. In this section, we define the formal
model and mechanics of AgentRank.

Trust Graph Model

We represent the agent community as a directed trust graph G = (V, E'), where each node
v € V corresponds to an agent, and each directed edge (u — v) € FE represents an trust
endorsement from agent u towards agent v. An edge weight w,,,, > 0 quantifies the strength
of u’s endorsement of v. These weights are derived from the knowledge graph data. In
simplest terms, w,,,, could be the amount of token stake u has put in support of v’s credibility
(either directly or via supporting claims about v). More generally, w,,,, could aggregate
multiple factors:

+ Direct endorsement: If © explicitly upvoted or gave a positive rating to v, this
contributes to w,,.

+ Successful interactions: If © collaborated with v on tasks and those tasks succeeded,
u might implicitly trust v more. We can translate this into an endorsement weight as well.
For instance, each successful collaboration could add a certain number of trust “points”
from u to v (and vice versa).

+ Credential-based trust: If u and v have a relationship (say w is an authority that certified
v), then w,,,, includes a component for that certification.

- Stake delegation: It’s possible u stakes on v in the registry (even if they haven’t
interacted) purely as an investment in v’s future success; this is also a form of
endorsement (with the incentive of reward if v does well).

It’s important to note that not every pair of agents has a direct edge; the trust graph is
typically sparse — agents only endorse those they have knowledge of. Also, edges could, in
principle, carry negative weight for negative feedback. For algorithmic simplicity, we handle
negative feedback by separate mechanisms (like downvotes reducing the effective positive
score), ensuring that our graph of w,,,, remains non-negative (many trust algorithms do not
handle negative edges well, as it can lead to oscillating scores; instead, we incorporate
negative feedback by reducing or nullifying positive edges or through penalty terms).

Now, based on this graph, the goal is to compute a score R(v) for each agent v that reflects
its global reputation. Intuitively, an agent will have a high score if endorsed by other high-
scoring agents, especially if those endorsements are strong (high weight). This is akin to a
recursive definition of trust: trusted agents are those trusted by other trusted agents. We also

incorporate base factors like the agent’s own track record. Formally, we define AgentRank as
the solution to the following equation:

Rv)=(1—-a)-B(v) + « Z Wyy R(u).

Here:

- N~ (v) is the set of agents that endorse v (the incoming neighbors of v in the trust

graph).

- N (u) is the set of agents that u endorses (outgoing neighbors of w).

Wy

The term —<———— is a normalized weight, representing the fraction of u’s total
Zze/\/+(u) Wz

outgoing trust that is allocated to v. This normalization ensures that each agent has a

fixed budget of influence to give out; for example, if Zz Wy, = 1, then w,, can be
interpreted as the probability 4 randomly chooses to trust v among all the agents it

knows, mirroring the stochastic interpretation in PageRank1.

B('v) is a base reputation value for agent v. This accounts for a priori or externally
assigned trust. B(v) can incorporate factors like: the agent’s initial stake (collateral), the
number of tasks it has completed successfully (raw count), or an equal small value for
everyone to ensure no agent has zero baseline. One simple choice is B(v) = ﬁ for all
v (uniform base), which guarantees the system of equations has a solution. Another
approach is B(v) proportional to something like min(1, log(stake, + 1)) - giving a
slight boost to agents that invested stake, without letting stake solely dictate reputation.
cac (O, 1) is a damping factor (often denoted d in PageRank literature). It controls the
relative weight of the recursive trust vs. the base trust. For example, o = 0.85 is a
common choice meaning 85% of the score comes from network endorsements and 15%
from the base. Damping prevents traps and infinite cycles, and ensures that the system
of equations has a unique principal solution (like the principal eigenvector of a modified

transition matrix).

This equation can be recognized as a form of the PageRank/EigenTrust computation. In
practice, we solve it via iterative power iteration: start with initial scores (e.g. R(”) (v) = B(v)
) and then at each step compute

R*V(w)=(1-a)Bv)+a)_

w’U/U

WR(t) (U)a

until convergence (scores change less than a small threshold). This distributed computation
can be implemented off-chain by indexer nodes, or in a decentralized way using smart
contracts for smaller graphs (though on-chain iteration for hundreds or thousands of agents
might be costly; more likely a set of community-run servers would compute AgentRank and
publish the results periodically, which can then be verified by others as needed by spot-
checking computations or by running their own computation).

Trust Propagation: The above formula encodes the propagation of trust: if a reputable agent
u (high R(u)) strongly endorses v (large w,,), then v will get a boost in R(v). Conversely,
endorsements from low-reputation agents do little. This elegantly captures the intuition that
an endorsement’s value depends on the endorser’s credibility — a principle that counters Sybil
attacks. If a group of fake agents all endorse each other, initially none have reputation, so their
mutual endorsements carry no weight; without incoming trust from outside the group (or
significant base B which could be tied to stake), they will remain low-ranked no matter how
they collude.

Trust Decay: To incorporate time-based decay, we adjust how w,,,, is calculated. Instead of
static weights, think of w,,, (t) as a function of time or of the recency of interactions. One
approach is to exponentially decay the contribution of an interaction or endorsement over
time. For example, if u endorsed v with weight w at time %, then at current time 1" we use
w - exp(—A(T — ty)) as the effective weight (with some decay rate \). This means older
endorsements gradually “cool off” unless renewed or reinforced by new activity. In
implementation, we could discretize time into epochs and require that endorsements be re-
staked or re-confirmed each epoch to maintain full weight. The algorithm would then
periodically update w,,, values based on decay. This ensures that an agent’s reputation
reflects its recent performance more than ancient history, allowing for rehabilitation (if an
agent improves over time after a bad period) or for sliding down (if an agent becomes
negligent after a strong start).

Domain-Specific Reputation: While AgentRank can produce a single global score per agent,
the system can be extended to context-specific scores. For instance, an agent might have a
high reputation as a coding assistant but a low reputation as a financial trading agent. We
achieve this by computing separate scores for different subgraphs or filtered sets of edges. If
edges are labeled by domain (e.g. the claim “collaborated on supply chain optimization” is
tagged with domain “supply_chain”), we can restrict the summation to only include
endorsements relevant to that domain. Then an agent will have Rgupply_chain (V) separate

from Rtranslation(v), etc. This is analogous to personalized PageRank or topic-sensitive
PageRank. In practice, one might maintain a vector of reputation values for each agent across
major categories. For simplicity, our primary focus is the overall reputation, but in
applications, an agent querying for a collaborator in task X might specifically look at the
reputation in domain X.

Sybil-Resistance and Collusion Deterrence

The AgentRank design inherently provides resistance to Sybil attacks through its trust
propagation rules and staking requirements:

+ Entry Cost: As mentioned, new agents likely have to put down a stake and start with at
best a modest base reputation. Creating N Sybil agents multiplies the stake cost by N.
Even if the attacker is willing to spend, the network can see that none of these agents
have external endorsements from trusted parties, so initially their R values will be near
the base level.

* Trust Graph Cut: In social network terms, Sybils usually form a cluster with few edges
from honest nodes to Sybils. AgentRank’s computed trust will remain low for nodes that
are not connected to the main trust network. In fact, we can designate a set of known
highly trusted seed agents (the analog of white-listed identities, or simply the biggest
hubs in the honest part of the graph) that effectively serve as trust sources. If the Sybil
cluster has no links from those sources, their computed trust will largely come from the
base term and circular references which, due to normalization, don’t amplify without
external input (they just redistribute the base trust among themselves). This is aligned

with prior analyses of trust metrics' - the power iteration will allocate almost no weight to
a cluster that is not pointed to by any trusted node.

+ Collusion Detection: Collusion, where multiple agents conspire to boost each other’s
reputation, is mitigated by the fact that if they are all low-trust to begin with, they can’t
significantly lift each other up without someone from outside trusting at least one of
them. If one colluding agent does manage to earn some trust legitimately and then tries
to unfairly bootstrap its friends, the system can detect anomalously structured
endorsement patterns (e.g. a small clique with disproportionately high mutual weights).
While our main algorithm doesn’t explicitly include an anomaly detector, this could be an
extension — e.g. incorporate a penalty if a large fraction of an agent’s incoming trust
comes from a single tightly-knit group. Alternatively, the dispute mechanism can be
invoked if users notice a ring of bots inflating each other; the community could downvote

those endorsements or flag them.

Incentive alignment (staking) also deters collusion: if Agent A with good reputation stakes for
a dubious Agent B (thus giving B a boost), and B later behaves badly, A’s stake can be
slashed and A’s reputation might suffer for vouching for a misbehaving agent. Rational agents
will therefore be selective and honest in their endorsements.

Privacy Preservation in Reputation

All AgentRank computations are done on public or at least shared data (the knowledge
graph), which might seem to conflict with privacy. However, privacy-preserving reputation in
our context means:

+ Agents are represented by pseudonymous IDs (DIDs) which do not have to reveal the
real-world identity of the owner. An agent can build a strong reputation under a
pseudonym. If for some reason they need a fresh start (or to avoid being linked to prior
activities), they could create a new DID, though they would also lose the accumulated
reputation — a fair trade-off that prevents abuse (one can’t shed a bad reputation without
also shedding the identity).

+ Agents do not have to reveal all aspects of their interactions to everyone. For instance,
details of a task could remain confidential between the participants, while only a
summary outcome (success/failure and a rating) is published to the reputation system.
Verifiable credential techniques can allow an agent to prove something about their
performance without revealing the raw data. For example, a third-party auditor could
issue a credential “Agent X achieved at least 90% accuracy in audit Y” without revealing
the specifics of the audit; Agent X can post that credential’s proof to the graph.

+ Zero-knowledge proofs (ZKPs) can be leveraged in advanced scenarios: An agent could
prove in zero-knowledge that “l have at least 5 independent agents who endorsed me” or
“my reputation score computed as of last epoch is above 0.8” without revealing who
those endorsers are or the exact score. This could be done by publishing a commitment
to the set of endorsers and a zk-SNARK proving the count of unique endorsers, etc.
While not trivial, such techniques are being explored in blockchain identity realms. This
allows selective verification: for example, if an agent wants to join a sensitive
collaboration, it might prove it has a clean record (no disputes against it) without
exposing its entire history.

Our design doesn’t mandate any specific ZK tech, but it keeps the door open. The core

requirement is that any publicly used trust data (like the final scores or major endorsements) is
public, but fine-grained data can remain private or off-chain as long as something verifiable
about it is on-chain. We believe this strikes a balance between accountability and privacy — an
agent’s reputation is visible, but the agent is not forced to reveal its real identity or every detail
of how it earned that reputation.

Formalizing Dispute Resolution

Dispute resolution in AgentRank occurs when there’s conflicting information or allegations of
misconduct that could affect reputation. We incorporate disputes as a first-class element:

+ Each claim or endorsement can be challenged as described. A challenged claim enters a
“disputed” state.

- We maintain a list of active disputes D = {d;, da, ...}, where each dispute d is
associated with one or more agents and possibly a particular claim or transaction.

+ Each dispute can itself be modeled as a node or process in the system with some
outcome (true/false or some judgement). The dispute resolution mechanism (voting/court)
provides an outcome after some time.

From the AgentRank perspective, a disputed positive claim might be temporarily removed
from the trust graph until resolved. That means if, say, Agent U’s endorsement of Agent V is
under dispute (perhaps because U is suspected to be a bot or bribed), we might set wyy =
0 pending outcome. If the dispute resolves that the endorsement was legitimate, we restore
wyy; if it finds it was illegitimate (e.g. U and V were colluding maliciously), we leave it out
(and possibly penalize U’s and V’s reputations further).

Similarly, if an agent is accused of misconduct, one could introduce a negative claim about it.
We usually handle negatives by effect on positives as mentioned, but formally one could have
negative edges. We might represent a negative event as a claim that reduces an agent’s base
trust B(v) or adds a penalty factor. For example, if agent X was caught cheating and it was
confirmed by dispute resolution, we could reduce B(X) to 0 for some period, or multiply
R(X) by a punishment factor, or simply broadcast a "avoid X" flag that effectively makes
everyone’s trust weight to X zero.

Dispute outcomes are also recorded in the knowledge graph (for transparency and future
reference). An agent with a history of many disputes (even if they won them) might be treated
with caution. In the reputation formula, one could subtract a small amount for each lost

dispute or even for each dispute as risk factor.

In summary, AgentRank’s formal model includes an implicit conditional aspect: certain edges
or base values are contingent on no disputes or on dispute outcomes. However, for steady-
state calculation, we assume disputes are resolved or not present; unresolved disputes just
remove some data until resolution.

Integration with A2A Protocol Metadata

Integrating AgentRank with the A2A protocol ensures that agents can make use of
decentralized trust information during their interactions. There are several touchpoints for

integration:

Agent Discovery Phase

A2A defines an agent discovery mechanism wherein an agent can advertise its presence and
capabilities on a network so that others can find it. We propose that these advertisements (or
directory entries) include references to the agent’s decentralized identity and reputation:

+ DID Publication: When an agent advertises itself, it should include its DID (or a hash of it)
and perhaps an associated blockchain network identifier (so that others know where to
look up its info). For example, an agent might broadcast: “AgentAlpha — skills:
[data_analysis, trading] — DID: did:example:12345 — IntuitionNetwork: BaselL2”. This tells
other agents they can go to the Intuition knowledge graph, and look up the entry for

did:example:12345 to get AgentAlpha’s profile.

* Reputation Snapshot: Optionally, the advertisement could include a snapshot of its own
reputation score or important credentials, accompanied by cryptographic proofs. For
instance, AgentAlpha might include “ReputationScore: 0.85 (proof attached)”. The proof
could be a signed statement from a known reputation oracle or a Merkle proof that this
DID’s score was 0.85 in a published list of scores on-chain. Including this allows peers to
quickly judge at discovery-time whether they want to even initiate contact. However, even
without this, a querying agent can retrieve the score from the graph themselves. The key
is that the advertisement provides the pointer (the DID).

To avoid bloat, A2A advertisements might not cram all reputation data; they just need to link
to it. The agent registry can be seen as a parallel system that A2A-aware agents agree to

use. Over time, the A2A standard could formally incorporate fields for “decentralized identity”
and “reputation references” in the protocol spec, making it a standard part of the agent
metadata.

Handshake and Communication

Once two agents connect (e.g., one agent sends a message to another to propose a task),
they perform a handshake to establish a secure channel. In this handshake, beyond
exchanging encryption keys, they can exchange identity assurances:

+ Each agent can send a challenge that the other must sign with its DID private key,
proving ownership of that DID (similar to mutual TLS authentication but with DIDs). This
ensures that the agent you’re talking to is the one who owns the on-chain profile you
looked up.

+ Agents might also exchange certain credentials at this stage. For instance, if a client
agent requires that any contractor agent has a certain minimum reputation or a specific
certification, it can ask the other agent to present proof of that. The other agent could
then send the relevant credential from the knowledge graph, or a zero-knowledge proof
of its score meeting the threshold.

A2A’s messaging format could allow an initial “introductory message” where agents share
such metadata. The protocol might remain agnostic of what’s inside (treating it as an opaque
blob), but if both sides understand the convention, it works. Think of it like how HTTPS has
certificate exchange — here agents exchange decentralized certificates.

Runtime Trust Queries

During an ongoing interaction, an agent can at any time query the registry if it needs updated
info. For example, imagine Agent A has delegated a long task to Agent B. Partway through,
new information emerges (perhaps someone logged a dispute about Agent B being
unreliable). Agent A could periodically check Agent B’s profile or set up a subscription for
changes. If Agent B’s reputation drops below a safe threshold or it gets flagged, Agent A
might decide to halt the collaboration or ask for additional assurances. This dynamic
monitoring is possible because the reputation system is live and transparent.

Moreover, agents can incorporate trust-based logic in their decision-making. For instance, an
agent marketplace could automatically route a task to the highest AgentRank scorer available

in the relevant domain. Or an agent might decide how much information to share with a
partner agent based on its trust score (high-trust partners get more access).

Trust Metadata in A2A Messages

We can embed lightweight trust metadata in each message header as well. For instance, an
agent sending a message can include a short-lived token or reference that others can use to
verify its reputation quickly. A concept could be a “reputation badge” — a signed token that
says “Agent X’s reputation > Y as of time T” signed by a reputation oracle. The receiving
agent sees the badge, quickly checks the signature (perhaps the oracle’s public key is
known), and if valid, it accepts that the sending agent meets the criteria.

This way, the receiving agent doesn’t have to query the whole graph every time it gets a
message - it relies on the attached proof. To prevent misuse, these badges should be short-
lived (with a timestamp and expiry) so that an agent whose reputation later falls cannot keep
using an old badge.

In A2A terms, this could be implemented as an optional extension header in the message
format, such as X-Agent-Badge: <signed_token> .

Interoperability and Composability

By integrating at the protocol level, we ensure composability: any agent platform or
application that speaks A2A and wants trust features can seamlessly plug into the AgentRank
system. For example, an Al workflow orchestrator could use A2A to let agents negotiate
tasks, and use AgentRank to score bids or proposals from those agents (like how humans
might use credit scores or seller ratings in marketplaces). The trust layer can also be
composed with other layers — e.g., a decentralized permission system where an agent’s on-
chain reputation might grant it access to certain resources. One could imagine smart
contracts that say “only agents with reputation > 0.9 can call this contract method” -
integrating with A2A means agents prove their rep to the contract as well.

The complementary nature of A2A and a decentralized registry has been summarized by

Intuition: “A2A is the language and pipes; Intuition is the Yellow Pages and the credit score

2 Our integration strategy precisely realizes this vision: A2A messages carry pointers

system
to the Yellow Pages (agent directory) and present credit scores (AgentRank) so that any

agent-to-agent conversation occurs in the context of known identities and trust levels. This

greatly increases the safety and reliability of open multi-agent systems, as an agent can
automatically be wary of messages from unknown or untrusted sources and prioritize
interactions with reputable peers.

Evaluation Plan

We plan a comprehensive evaluation of the proposed AgentRank system along multiple
dimensions: algorithmic performance, security (resistance to attacks), and usefulness in
practical multi-agent tasks.

Simulation of Agent Networks

We will implement a simulator to create synthetic multi-agent ecosystems, where we can
control the ground truth of agent behaviors (honest or malicious) and then test how well
AgentRank identifies the trustworthy agents. The simulator will involve hundreds of agents
with programmed interaction patterns:

+ Honest agents: follow protocols, perform tasks correctly.

+ Malicious agents: attempt to game the system - e.g., Sybil nodes (one entity controlling
many agents that endorse each other), colluding groups that falsely upvote each other, or
agents that perform well at first to gain reputation and then start betraying.

+ Mixed behavior: some agents might oscillate or have occasional failures to test how
forgiving/robust the system is.

We will simulate a sequence of time steps. At each step, agents interact (perform tasks
together or endorse each other according to a scenario script), and we update the knowledge
graph and run the AgentRank computation. We will measure:

+ Ranking quality: How high do honest agents rank vs malicious ones? We expect honest
ones to cluster at high AgentRank scores and malicious ones to be low. We can measure
ROC curves if we consider “malicious” as the positive class to be ranked low. Ideally, the
AUC (area under curve) for detecting bad actors by low score should be near 1.0.

- Sybil containment: We will specifically look at a scenario where an attacker inserts N
Sybils. We measure the aggregate reputation that all those Sybils can accumulate relative
to a single honest agent. With strong Sybil resistance, even as [N grows, the total trust
allocated to that Sybil cluster should remain low (bounded by what the attacker’s stake or

few entry points provide). This can be quantified by, say, the highest Sybil agent’s R
value or the sum of all Sybils’ R.

+ Collusion resilience: We simulate colluding groups and see if AgentRank unduly
amplifies them. One metric is reputation inflation factor — how much higher do colluders
rank by colluding than they would if they were isolated. We expect minimal inflation
unless they had some real external trust.

We will also vary parameters like the damping factor & and any weight decay to see how it
affects stability and fairness.

Empirical Deployment on Testnet

Beyond simulations, we aim to deploy a prototype of the system on a test network
implementation of Intuition (for example, a testnet implementation of Intuition on Base

Sepolia). We will register a number of agents and conduct tests of the on-chain components:

+ Gas costs and performance of writing claims to the knowledge graph (for scalability
evaluation).

+ Latency of reputation updates (if computing off-chain and posting, or if using an on-chain
simplified calculation for small N).

+ We’ll attempt some realistic user testing by inviting participants to play roles: e.g., have
some people run agents that do useful tasks (maybe writing small essays or solving
problems) and other people run agents that try to spam or cheat. The community (test
participants) can then stake tokens (perhaps test tokens) to validate or refute claims,
exercising the staking and dispute system.

The outcomes will help identify any practical issues, like: Is the dispute process too slow or
too costly? Do participants understand how to use the staking mechanism (this touches on
UX, which is not the focus here but important for real adoption)?

Security Analysis and Formal Verification
From a theoretical standpoint, we will analyze certain security properties:

+ We aim to prove (or at least argue with bounds) some Sybil-resistance guarantees. For
example, in a simplified model where there is a set of honest agents that fully trust each
other and no trust to outsiders, and an attacker introduces m Sybils with no initial

outside trust, we can show that in the steady-state AgentRank scores, the total score of
all Sybils is at most (1 — a) (coming solely from base), whereas honest agents share the
rest (a) weighted by their trust network. This means Sybils can at best occupy (1 — &)
fraction of the “trust space” no matter how many they are (and if «x is high like 0.85, that

leaves them only 15% at best, evenly split among possibly many identities)ﬁ. This would
formally confirm the resistance.

+ We will examine worst-case collusion: if one malicious agent does gain high trust (e.g., by
actually doing good work to gain reputation, then turning bad), how much damage can it
do by bringing others along? We might derive bounds that if an agent with rep R
endorses k others fully, their scores will be at most R (it can’t create more total trust out
of nothing), and with damping, the system naturally limits multi-hop effects.

+ Formal verification of smart contracts: The contracts for staking, vaults, and dispute
should be audited and possibly formally verified for correctness (no double counting
stake, proper slashing logic, etc.), to ensure the on-chain implementation truly reflects the
intended model.

Evaluation of Privacy Features

For privacy, we can set up scenarios to test that essential functions work without exposing
data:

+ Use dummy zero-knowledge proofs to simulate how an agent might prove a statement
about its reputation without full disclosure. For example, we might generate a SNARK
that verifies an agent’s score in a Merkle tree of scores. We would measure the proof
generation and verification time to see if this is feasible in real-time agent interactions.
This is more of a stretch goal, but it aligns with the privacy-preserving claim.

+ We also analyze the graph for potential de-anonymization: although agents are
pseudonymous, if one agent interacts heavily with another, someone might infer a
relationship. Strictly speaking, that’s metadata leakage that is inherent (like analyzing a
public graph). Mitigations like rotating identities or not always using the same agent for
everything can be discussed. Our evaluation might involve measuring how easily an
outside observer could cluster agents by their interactions (using graph analysis), to
ensure that if needed, agents can take measures to not reveal linkages they don’t want
revealed. This touches on a deep privacy topic and may be beyond initial
implementation, but we note it.

Use-Case Demonstrations
Finally, to demonstrate utility, we will set up a few illustrative use-case scenarios:

1. Collaborative Task Solving: A complex task (say, a research problem) is broken into
parts. Agents with different expertise must form teams. We will run this scenario with
AgentRank enabled (agents prefer high-rep partners) and without it (agents choose
randomly or by simple criteria) and compare outcomes. We expect that with AgentRank,
successful teams form more often (since reliable agents cluster), yielding higher task
completion rates.

2. Open Agent Marketplace: Suppose multiple agent service providers offer similar
services. We simulate user agents picking a provider based on either round-robin or
reputation-weighted selection. We then inject a malicious provider that sometimes fails or
cheats. We should see that the reputation approach quickly down-ranks the bad provider,
SO user agents stop using it, whereas without reputation many users would continue to
be harmed until perhaps a manual intervention.

3. Trust Recovery Example: We can illustrate how an agent that had a failure can recover.
For instance, Agent Z has an early failure (maybe a dispute resolved against it, dropping
its score). We then let it perform a series of good tasks which others endorse. We
observe its AgentRank gradually improve due to decay of the bad event and influx of
good endorsements. This shows that the system isn’t one-and-done like a single rating,
but a resilient measure that can adapt.

Throughout these evaluations, we will collect metrics and qualitative observations, which will
be reported in a future full paper or technical report. The expectation is that AgentRank
significantly enhances the robustness of multi-agent interactions: attacks that would derail a
naive system (without a trust layer) are largely mitigated, and the overhead introduced (in
terms of computation and communication) is manageable in practical settings.

Conclusion

We have presented AgentRank, a decentralized, trust-based framework for open multi-agent
systems, designed to complement Google’s A2A agent communication protocol. By
leveraging a token-curated knowledge graph and a graph-based reputation algorithm, our
approach addresses the critical question of “Which agents should be trusted?” in an
environment where any agent can interact with any other. A2A solves the interoperability

problem by defining how agents talk; AgentRank (built atop Intuition’s decentralized registry)
solves the discovery and credibility problem by defining how agents earn and convey trust.

Our technical whitepaper introduced the context of A2A and highlighted the risk that without
an open trust layer, the agent ecosystem could recentralize around proprietary directories or
search engines. We argued that decentralization of the agent “phonebook” and reputation is
essential to maintain a level playing field and to avoid dystopian outcomes where one
company mediates all agent interactions. Drawing on Intuition’s work, we described how a
decentralized knowledge graph can serve as a neutral meeting ground for agents, where
identities and claims are stored transparently and curated by the community. We then detailed
AgentRank’s design, providing formal notation for the trust graph and the iterative algorithm
that propagates trust with damping (to ensure convergence and fairness) and incorporates
time decay and dispute resolution to keep reputations accurate and up-to-date.

AgentRank is decentralized and verifiable: all inputs (endorsements, claims, stakes) are on a
ledger, so anyone can audit why a certain agent has the reputation it does. It is Sybil-
resistant by combining economic barriers (stake requirements, token curation) with trust

graph analysis that limits the influence of isolated clusters of nodes®. It respects privacy by
allowing pseudonymous participation and integrating with emerging cryptographic techniques
for selective disclosure. And it is expressive enough to capture various signals about an
agent: from formal credentials to peer feedback to observed performance metrics. These
signals are distilled into a single (or multi-dimensional) AgentRank score that agents and
humans can use as a basis for trust.

We also outlined how AgentRank could seamlessly integrate with the A2A protocol. As A2A-
enabled agents handshake and advertise capabilities, they can reference their decentralized
identity and even provide proofs of their on-chain reputation. This gives agents an automated
way to vet each other before engaging in complex collaborations — effectively analogous to
how web browsers check TLS certificates or how humans check reviews and ratings. By
making this an open protocol interaction, we avoid any single point of failure: no central server
is needed to broker trust, and no single authority can falsify or manipulate an agent’s standing
without consensus.

The broader implication of this work is the emergence of a secure, open, and composable
multi-agent coordination layer for Al. In such a layer, new agents can join simply by creating
a DID and proving themselves through actions; successful agents are recognized and sought

after through an open reputation system; malicious agents are quickly identified and isolated
by the community. This fosters an ecosystem much like open-source software — meritocratic
and transparent — as opposed to a closed platform. The coordination framework for future
machine intelligence should belong to everyone as an open commons, not be locked down by
gatekeepers. By marrying A2A’s communication standard with a decentralized trust substrate,
we move closer to that vision.

In future work, we plan to iterate on the AgentRank algorithm (e.g., exploring machine learning
techniques on top of the graph to predict trustworthiness, or refining the weighting scheme
with empirical data). We will also watch how the A2A protocol evolves in the wild and adapt
our integration accordingly — possibly even contributing to the standard to ensure hooks for
decentralized identity and reputation are included. We invite Al researchers, multi-agent
system developers, and Web3 enthusiasts to collaborate on this endeavor. The challenges
ahead are non-trivial (balancing robustness with openness is an ongoing process), but the
reward is immense: a rich landscape of Al agents cooperating across organizational
boundaries, where trust is managed as a public utility. With AgentRank and similar efforts, we
aim to ensure the coming age of agent-based computing is one of empowerment and
collaboration for all, rather than a rehash of centralized control .

In conclusion, AgentRank provides a promising foundation for scaling trust in multi-agent
systems. It builds on proven ideas (like eigenvector-based reputation and token-curation) and
tailors them to the unique context of Al agent ecosystems. Together with the A2A protocol, it
enables an internet of autonomous agents that can not only communicate but also
coordinate safely, knowing whom to trust. This lays critical groundwork for the future of
distributed Al — potentially the substrate from which robust, decentralized artificial general
intelligence might emerge, as countless specialized agents with aligned incentives work in
concert to solve the world's complex problems.

References

1. Kamvar, S.D., Schlosser, M.T., & Garcia-Molina, H. (2003). The EigenTrust Algorithm for
Reputation Management in P2P Networks. Proceedings of WWW 2003. (eigentrust.dvi)

2. Oxbilly (Billy Luedtke). (2025). Agents of Change: Google’s A2A and the Decentralized
Future of Al Collaboration. OxIntuition on Medium, April 2025. (Agents of Change:
Google’s A2A and the Decentralized Future of Al Collaboration | by Oxbilly | OxIntuition |

https://nlp.stanford.edu/pubs/eigentrust.pdf#:~:text=We%20describe%20an%20algorithm%20to,reputation%20system%2C%20called%20EigenTrust%2C%20has
https://medium.com/0xintuition/agents-of-change-googles-a2a-and-the-decentralized-future-of-ai-collaboration-bd53183bac1a#:~:text=This%20raises%20a%20pivotal%20question%3A,Google%E2%80%99s%20cloud%20as%20a%20meeting
https://medium.com/0xintuition/agents-of-change-googles-a2a-and-the-decentralized-future-of-ai-collaboration-bd53183bac1a#:~:text=This%20raises%20a%20pivotal%20question%3A,Google%E2%80%99s%20cloud%20as%20a%20meeting

Apr, 2025 | Medium)

3. Google A2A Protocol Announcement and Documentation (2025). Agent-to-Agent
Protocol (A2A) — Open Standard for Al Agents. [Online]. (Announcing the Agent2Agent
Protocol (A2A)) (a2a-directory/docs/a2a-vs-mcp.md at main - sing1ee/a2a-directory -
GitHub)

4. Intuition Whitepaper (2025). Intuition: Decentralized Knowledge Graph and Trust Protocol.
(Whitepaper PDF, Intuition.systems) (Intuition Whitepaper)

5. Intuition Medium Articles (2025). Various blog posts by OxIntuition team explaining the
token-curated knowledge graph and trust approach (Intuition Medium).

6. EigenTrust & Related Trust Algorithms. (2003-2021). Research on decentralized
reputation (EigenTrust, Advogato’s trust metric, etc.) demonstrating power-iteration trust
computation and Sybil resilience (eigentrust.dvi).

7. W3C. (2019). Decentralized Identifiers (DIDs) v1.0. W3C Recommendation. (Basis for
agent decentralized identity in our system.)

8. W3C. (2019). Verifiable Credentials Data Model 1.0. W3C Recommendation. (Basis for
credentials used in agent profiles and trust assertions.)

*(Note: The above references [2], [4], [5] refer to content summarized or quoted from Medium
articles and whitepapers by the Intuition team and others, as cited inline. These provide
context and statements used in this paper. Reference [1] is an academic citation for the
EigenTrust algorithm. References [7] and [8] are standards underpinning parts of our design.

https://medium.com/0xintuition/agents-of-change-googles-a2a-and-the-decentralized-future-of-ai-collaboration-bd53183bac1a#:~:text=This%20raises%20a%20pivotal%20question%3A,Google%E2%80%99s%20cloud%20as%20a%20meeting
https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/
https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/
https://github.com/sing1ee/a2a-directory/blob/main/docs/a2a-vs-mcp.md#:~:text=MCP%20,like%20how%20programmers%20call%20functions
https://github.com/sing1ee/a2a-directory/blob/main/docs/a2a-vs-mcp.md#:~:text=MCP%20,like%20how%20programmers%20call%20functions
https://github.com/0xIntuition/intuition-whitepaper/blob/main/intuition_whitepaper.pdf
https://medium.com/0xintuition
https://nlp.stanford.edu/pubs/eigentrust.pdf#:~:text=they%20download%2C%20the%20network%20effectively,Communication%20Networks%5D%3A%20Distributed%20Sys%02tems%E2%80%94Distributed

	AgentRank: A Decentralized Trust and Coordination Framework for Multi-Agent Systems in the A2A Era
	Abstract
	Introduction
	Background
	Google’s Agent-to-Agent (A2A) Protocol
	Intuition’s Decentralized Knowledge Graph for Trust
	Related Work on Decentralized Trust and Reputation

	System Design: Decentralized Agent Registry and Reputation Network
	Agent Identity and Profile
	Knowledge Graph: Claims and Interactions
	Community Curation and Governance
	Query and Integration Interfaces

	AgentRank Algorithm: Decentralized Trust Evaluation
	Trust Graph Model
	Sybil-Resistance and Collusion Deterrence
	Privacy Preservation in Reputation
	Formalizing Dispute Resolution

	Integration with A2A Protocol Metadata
	Agent Discovery Phase
	Handshake and Communication
	Runtime Trust Queries
	Trust Metadata in A2A Messages
	Interoperability and Composability

	Evaluation Plan
	Simulation of Agent Networks
	Empirical Deployment on Testnet
	Security Analysis and Formal Verification
	Evaluation of Privacy Features
	Use-Case Demonstrations

	Conclusion
	References

